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A problem related to the optimal placement of three tracking stations for pur-
poses of two-station tracking is formulated and solved.

I. Introduction

It is known (and easy to see) that three tracking an-
tennas, however they are placed on the globe, cannot
provide total coverage of the celestial sphere. However,
since most interesting deep-space phenomena (spacecraft
and natural astronomical objects) have small declinations,
this fact is of little practical importance. For example, the
DSN’s 64-m antennas cannot “see” certain points on the
celestial sphere at declinations of 28 deg or so.

Of course there is typically much overlap in the cover-
age of the celestial sphere provided by three stations, and
this overlap can be used to good advantage, since simul-
taneous two-station tracking is possible in these doubly-
covered regions. Two-station tracking is useful for a
variety of reasons. For example, since the diurnal doppler
amplitude is proportional to the cosine of the declination,
accurate determination of spacecraft declination using
doppler is quite difficult at declinations near zero. Two-
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station tracking can however be used for accurate goni-
ometry at all declinations. Also, accurate tracking of
constantly accelerating spacecraft could best be done with
two stations. Finally, important astronomical knowledge
can be gained from interferometric data.

Thus it is desirable to have as much of the celestial
sphere as possible doubly covered. It is easy to see, how-
ever, that if no point on the celestial sphere is visible from
all three stations simultaneously, the total area that is
doubly covered is always the same, We therefore arrive
at the question answered in this article: What is the maxi-
mum overlap possible between the coverages of the celes-
tial sphere provided by two of the antennas, given that all
three cover all celestial declinations that are less than a
fixed amount?

More precisely, let us assume that the three antennas

each cover a circular cap of angular radius 8 on the celes-
tial sphere, and that it is required that the three circular
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caps cover all objects with declinations in the range
[—ea, a]. Then we wish to maximize the region of intersec-
tion of two of the caps. Surprisingly, the optimal configu-
ration does not always have all three stations centered on
the equator.

In the case of the 64-m net, 8 = 84° and a is about 28°.
It will turn out that there is a configuration of three
a = 84° circular caps covering the band of declinations
between +28° with two of the stations separated by only
27° on the globe. (This configuration has all three stations
on the equator.) However, the closest pair of stations on
the 64-m net (Goldstone and Madrid) are separated by
82°. Thus as far as two-station tracking is concerned, the
64-m net is far from optimally arranged.

Il. Solution to the Problem

Three spherical caps of angular radius 8 (0 < 8 < «/2)
are to cover the band on the sphere with latitudes
between —a and « (0 ==« < #/2). We want to maximize
the area of the region of intersection of two of the caps.

Denote latitude on the sphere by §, and let ¢ measure
longitude west from some reference point. Let the cap C;
have center at (8;, ¢;). Since each cap covers less than
half the equator, following the equator around we see
the caps in a cyclic order C,, C,, and C; such that
0 < ¢; — ¢j-1 (mod 2x) < =. It can be shown that the
caps cover the whole band in the same order that they
cover the equator: if C; intersects the band in the region
S;, then the band is the union of six disjoint regions
Sl - Sz - S:{, Sl msz, S: - S1 - S:x, SQ ﬂ83, sa - Sl - Sz,
and S, N S,, each of which extends across the band.

C; contains the points (8, ¢) that satisfy the inequality

cos 8; cos 8 cos (¢ — ¢;) + sin §; sin § = cos 8

The boundary of C; intersects the boundaries of the band
in four points A}, A7, B, and Bj;, with coordinates

cos B = sin §; sina
oS d;Ccosa

Ab:8 = *a,¢ = ¢; + cos™!

cos 8 5= sin §; sina
COS 8 COS a

B;T 8= *a,¢p = ¢; — cos?
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We have a covering if At and A are in C,.., and B* and B;
j i 1 i i
are in Cj_,.

Our problem is to maximize the area of C,; N C.. This is
equivalent to maximizing the cosine of the angle between
the centers of C, and C., which is

cos f;> = c0s 8; cos 8, cos (¢, — ¢.) +sin§, sind,  (2)
There is an extremal covering for this problem, if « and g8
are such that some coverings exist. Hence it is sufficient
to consider only those coverings for which there is no obvi-
ous variation that increases cos 6,..

If we move each cap C; to a position centered on the
equator at (0, ¢;), we preserve the covering of the band.
For, if we denote the points A%, etc., in the new position
by bars, A% and B are dlametrlcally opposite on the cap,
hence

cos® acos [¢ (A7) — ¢ (B))] — sin*a =

cos 2B = cos* a cos[¢ (A?) — ¢ (B7)] — sin®e (3)

and

¢ (A7) — ¢ (B7)=¢ (A}) — ¢ (B;)

By symmetry, this is equivalent to

Similarly

e

¢ (‘A—j:) - ¢j‘1é§ [¢ (A;—l) - ¢j-1 + ¢ (A‘;—l) - ¢i—1]

If we started with a covering of the band, C; and C;_,
meet on each boundary of the band, which makes

— ¢(B3) T (A5) — ¢ =¢; — ¢

Hence adding the preceding inequalities, we get

¢, — (B +d(A5,) — ¢ =0, — ¢/

showing that C; and C;., overlap on each boundary of the
band. This proves the assertion, that the new configura-

tion covers the band. By Eq. (3),

CcOs

# (&) — ¢ (B}) = 2cos™

COS «
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The upper boundary of the band can be covered by three
arcs with this change in longitude only if

cos 27
2 cos! ___’8 >~ .L

Cos 3
or
1
cos == 5 cos a (4)

This is a necessary and sufficient condition for the exis-
tence of coverings.

One way to increase cos 4., is to move the center of C,
directly toward the center of C.. The covering is pre-
served unless A% or A7 goes out of C,. Hence, for an ex-
tremal covering, one of these points must lie on the bound-
ary of C,, so that A; = B or A; = B7. Similarly, B = A;
or B, = A;.

By reflecting across the equator, we can make A; = B,
Suppose first that the only other one of these relations that
holds is Bf = Af, Move the center of C; along the great
circle equidistant from A} and B;. There is a nearby posi-
tion where A* and B; fall inside C,, unless the center of
C, is on the great circle arc from A} to B;, Then, A} and B;
are at the ends of a diameter of C;, so §; = 0. Since A; and
Bt are inside C,, 8, > 0 and 8, < 0. If we go to the cover-
ing with centers on the equator at (0,¢;) as described
above, then by Eq. (3), cos 4,, is increased. Hence we are
not at an extremal covering.

This shows that we need only consider coverings with
A; = B; and B; = A;. Since B and A} are in C,,

slé "83, Szés:i (5)

Now we prove a lemma.

Lemma. A covering with §;, < 0, A; = B;, B; = 4; and
8, > — 38, cannot be extremal unless A; = B; and 8, = §..

Proof: First suppose A; =4 B;. Then C, can be rotated
about A; in either direction without destroying the cover-
ing. If the covering is extremal, cos 6, is at a stationary
point under this rotation, which implies that the center of
C, lies on the great circle through A; and the center of C..

If 8, > —8,, we find likewise that this circle goes
through B;. By symmetry, 8, = 8, and ¢s — ¢, = ¢; — ¢
Then by Eq. (3),

cos 8, = cos? §; cos [27 — 2 (¢, — ¢p3)] + sin? §,
=1—2[cos 8, sin (¢, — ¢s)]?
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If we vary 8, and §., keeping 8, = 8. and the hypotheses
of the lemma, cos 8, sin (¢, — ¢5), which is the distance of
the center of C, from the vertical plane through the center
of the sphere and the center of C;, has a relative maxi-
mum for the given configuration. Hence cos ;. is at a rela-
tive minimum, and can be increased by varying §, in
either direction.

For 8, = —3§,;, B; = A%, and we can only rotate C, up-
wards about B;. If this does not increase cos 6,,, the great
circle through the centers of C, and C, must pass above
B;. Let the highest point on this circle have longitude 4.,
and let it cross 8 = —a at ¢; after passing through the
center of C.. Then we have ¢; — ¢, = ¢, — ¢ (A;). Since
8, > 8., |¢1 _¢4| < P2 by, and so b5 < Py — (A;)
Also, 8, > 8, implies ¢ (B;) — ¢. > ¢ — ¢ (A;), hence
¢5 — ¢ < (B3) — ¢.. But this makes the circle pass below
B3, a contradiction.

Now we know that A; = B;. The circle § = —« is parti-
tioned by C,, C., and C; into three parts. On each part,
the variation in ¢ can be found from Eq. (1). Since the
total variation is 2=, we get

(p(A7) — &) T (0 (A7) — ¢,) + ($(A;) —¢,) ==
or

_cos B+ sin 8, sine
cos §; cos a

 cos 3+ sind,sina
Cos 8., CoS a

COos™

i , €os B+ sin &, sin
cos~ ==
Co$ 8, CoS «
(6)

Then ¢ = ¢.=¢ (A7) — 1 T ¢ (A;) — . =7 — (¢ (A7) —9,),
which is fixed when we vary 8, and §, subject to Egs. (5)
and (6). Differentiating Eq. (6), we get

ds. sina + sin 8§, cos B/ sina + sin 8, cos B

ng—:_ cos* 8, V1 —ui cos*8: V' 1 —us <0
7

where u; = (cos 8 + sin §; sin a)/(cos §; cos «), Hence the
range of 8, satisfying Eqs. (5) and (6) is an interval with
8, > 8, = |8;| at one end, §, > 8§, = |§;| at the other end.
Differentiate Eq. (2) with respect to 8,:

dcos .
ds,
. ) ds.
[ —cos 8, sin 8, cos (¢ — ¢.) + sin &, cos 8.] T
1

— sin §, cos 8, cos (¢, — ¢.) + cos S, sin 8,

JPL TECHNICAL REPORT 32-1526, VOL. XIX



By using Eq. (7) and the relation

cos [(¢ (A7) — ¢1) + (¢ (A7) — )]
:u]u3~\/1~u§ 1 — u}

this can be reduced to

Il

cos (¢r — )

dcost,.

a5 = (positive quantity) * (sin$. — sin §,)

It follows that cos#,. has a maximum at §; = §,, which
proves the lemma.

Now we continue with considering all coverings for
which A; = B; and B; = A;. There are essentially three

classes:
class (I):  Ajand Bt interior to C,
class (IT):

class (II1): A; = B and B = A

A: = B}, Bt interior to C,

For a covering in class (I), the center of C; may be
moved along its meridian to bring A; and Bj inside C,,
unless the center is already at the closest point to A; and
B;. Then A; and B; are at the ends of a diameter of C,,
which occurs for

8, = —sin™! (sin a/cos ) (8)

The hypotheses of the lemma are satisfied, so A; = B; and
8, = §,. Equation (6) becomes

L o8 B +sin §, sina , cos B+ sin §; sine
- _

2 cos™

€0s &, cos a €0s 8 COos «
Transpose the last term on the left and take the cosine of
each side. By the use of some trigonometric formulas, the
result is

9 cos § + sin 8, sin & 2+ cos B + sin §;sin a — 1 )
€08 §, Cos a €os 8, cos a
From Eq. (2),
'0s B + sin §; sin
cos §,, = sin® §, — cos® 8, * cos f s (10)

COS 35 COS &
This gives a possible extremal covering.
For a covering in class (II), the center of C, can be

varied along the great circle equidistant from A;.and B;,
If 8, > 0, varying in the direction of decreasing latitude
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brings all the points A;, B, and B; inside C,. Hence §; = 0.
If 8, =0, 8, =0 and §, > 0. Then moving the center of
C. to (0, ¢:) gives a covering for which cos 6, is larger. If
33 <0, 8> 8, = —8,. The lemma applies, and gives a
contradiction. Hence there are no extremal coverings in
class (II).

For a covering in class (III), §, = §. = —§,. We can
reflect the covering in the equator to make §,=>0. Then
we have a covering if C, and C, overlap on the lower
boundary of the band. The condition for this is

,Cos B + sin §, sinea
c0S §; cos a

L Cos 3~ sin §, sina

2 cos
cos 8, cos «

=

ki

(11)

The left side of Eq. (11) is a decreasing function of §, =0,
so we have an interval 0 =< §, = §,, to consider, where
equality occurs in Eq. (11) at § = §,,.

Put

u = (cos 8 + sin 8, sin ) /(cos 8, cos a)

v = (cosf — sin §; sina)/(cos &, cos «)
and
YT d T s
= (¢ — ¢ (B)) + (6 (A;) — ¢s)

= cos'u + cost o

By symmetry, ¢. — ¢, + 2y = 2=, and

cos §,, = cos® §; cos (2= — 2y) -+ sin? §,
=1~ 2cos?§, sin®y
Let
R = (1~ cos#t,,)/2
= co0s® 8, sin?y

=cos?8, [uV1—v>+oV1—u (12)

Eliminating radicals,
[R + cos? 8, (2u*v? — u* — v?)]2 = 4utv? cos* §,
X (1 ~u?)(1—v?)
(13)

In the range of 8, of interest, u? and v? are less than 1,
and Eq. (13) has real roots for R. The right side of Eq. (13)
becomes negative when we pass 8; = 8 — «, where u be-
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comes greater than 1. Those points (8, R) with 0=2§,=
B — «, which satisfy Eq. (13), form one connected curve
in the 8,R plane. If we multiply Eq. (13) by cos* « cos® 8,
it can be put in the form
cos* a cos? 8, R? + 4R [(cos® B — sin®a + sin® « cos? §,)
— cos® a cos? 8 (cos? B + sin*a
— sin®a cos? 8;)] + 16 cos® B sin’ &

X (cos? 8, — cos*§,) = 0 (14)

where the left side is a quadratic function of cos® 8.

The points of the §,R plane with 0=138, = 8 — a which
satisfy Eq. (14) lie on a curve with its end points on §, =0,
at R =0 and R = R, = 4 cos® B (cos® « — cos? 8)/cos* a.
Since Eq. (14) is quadratic in cos? §,, each value of R
can correspond to at most two values of §;. This implies
that the curve passes through 0 < R < R, just once,
monotonically.

An extremal covering minimizes R. R, is the value for
a covering with 8, = 0. Since there is no local minimum
on (0, R,), only & = 0 or & = §;, can give extremal
coverings.

This gives the following three coverings to consider:

(1) 8, =8, =8, =0. Here cos,. =1 — 2R, =
1 — 8 cos® B(cos? @ — cos? B)/cos* a

(2) 8, =8, = —8,>0. We need equality in Eq. (11).

Then Eq. (9) applies with §; = —8§;, or2u* + v = 1.
Then from Eq. (12),

cosf, =1 —2cos?8, (1 — u?)
cos s = 1 — 2cos? §,
+ 2(cos B + sin §, sin &)?/c0s* a (15)

The condition of Eq. (9) is

2 (cos B + sin §, sin @)*
+ cos 8, cos a (cos 8 — sin §, sina) = cos* §, COs* @
(16)
We also have the covering found in class (I):

(3) 8, = —sin* (sin a/cos B), §; = §, > —&,. Here &
satisfies Eq. (9) and cos 6. is given by Eq. (10).
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For any a, 8, the optimal covering must be one of these
three. The covering (2) is better than (1) if

_ 4cos® B (cos®a — cos* B)
N cos* a

— cos® §,

(cos B + sin 8, sin a)?
cos’a

>0

where 8, satisfies Eq. (16). Equation (16) leads to a 4th-
degree equation in sin ;. If we eliminate sin 8, between
this equation, and the equation A = 0, we get a relation
between « and 8 that holds on the curve separating the
regions where (1) or (2) is better. This equation has the
following parametric solution:

B Ox3 — 6x* + x
Y770 — 132 + 8x — 1

t=x(y—1) (17)
sinae = \/T
cos B = cosa'{ t/y
The curve is generated by 3=x=3 + V8.

When the covering (3) exists, sin « == cos 8, which
already implies that (2) is better than (1). Hence the
region of (a, 8) for which (3) is extremal lies in the region
where (2) is better than (1). Whenever (3) exists, the value
of 8, for (2) is greater than sin™ (sin «/cos 8). This implies
that (2) is not extremal, for varying 8, toward 0 in (2)
brings the points Bz, A% inside C,. Hence (3) is extremal
when it exists, and the boundary of the region of («, 8) for
which this occurs is the curve on which Eq. (15) is satisfied
by 8, = sin! (sin «/cos B), or

2 (cos? B + sin? @)* + cos a (cos? B — sin?a)%/? =
cos? a (cos? B — sin a)

Rationalizing, we get a 4th-degree equation for cos? 8 in
terms of «. This equation has the parametric solution

(1= 2)Bx+5)
Y= 262 + 502° + 49x + 8

_(1~x)2 9x2+14x+9’ 0=x=1
26x% + 52x% + 42x + 8 (18)
sine = Y ay
cosB=Vy

In Fig. 1, the region cos 8=1/2 cos « is shown, divided
into the regions where each configuration is optimal.
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Fig. 1. The regions where each configuration is optimal
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